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Making use  of  the fact  that  the l imi t  s ta te  does not depend on the loading h i s to ry ,  the author 
p ropose s  that l imi t  ana lys i s  theory  be used to inves t igate  p las t ic  flow p r o c e s s e s  a ssoc ia ted  
with a change in initial geome t ry  by r ep resen t ing  the de format ion  p r o c e s s  as  a continuous 
sequence  of l imi t  s t a tes  defined by a given instantaneous configuration.  

The e x t r e m u m  pr inc ip les  of r ig id -p las t i c  flow theory  were  developed in o rder  to invest igate  the equi -  
l i b r ium l imi t s  of nondeformable  bodies ,  i . e . ,  bodies whose deformat ion  in the l imi t  s ta te  is so smal l  that the 
equi l ibr ium conditions can be wr i t ten  for the initial geomet ry .  The idea of extending the ex t r emum p r i n c i -  
p les  to the ana lys i s  of p r o c e s s e s  of p las t ic  flow assoc ia t ed  with d is tor t ion is based on the impor tan t  o b s e r v a -  
tion that ,  as  dis t inct  f rom the genera l  case  of p las t ic  deformat ion ,  the l imi t  s ta te  does not depend on the 
loading h i s to ry  and the initial s t r e s s e s .  By r ep re sen t ing  the p r o c e s s  of p las t ic  deformat ion  as  a continuous 
sequence of l imi t  s t a tes  defined by a given instantaneous configurat ion of the de fo rmed  body, one can use  
this p r o p e r t y  of the l imi t  s ta te ,  on the one hand, to obtain the curve  of the requi red  load ensur ing continuity 
of the de format ion  p r o c e s s  and, on the o ther ,  to e s t ima te  the r e s e r v e s  o f c a r r y i n g c a p a c i t y d e t e r m i n e d  by 
the d is tor t ion  of the initial geomet ry .  

1. The ma thema t i ca l  formula t ion  of the e x t r e m u m  pr inc ip les  of r ig id -p las t i c  flow theory is given by 
the s y s t e m  of inequali t ies  [1] 

M y  -< ds < ,f .dr, 
V S V 

where  

is the sum of the products  of the s ta t ica l ly  admis s ib l e  s t r e s s e s  ax  . . . . .  r z x  and the effect ive s t r a in  r a t e s  

~x . . . . .  ~zx; 

is the in tens i ty  of the k inemat ica l ly  poss ib l e  s t r a i n - r a t e  field; ;~ is the l imi t  load coefficient.  

In o rde r  to solve the p rob l em  of the equi l ibr ium l imi t  of an undeformed body it is sufficient  to con-  
s t r ue t  the s t r e s s  field,  sa t i s fy ing only the equi l ibr ium equations and the conditions on the su r face  S, and 
the s t r a i n - r a t e  field compat ib le  with the cons t ra in t s  imposed  on the body. By solving inequali t ies (1) for  
Jr, we obtain i ts  upper  and lower  bounds 

Xo ,f HdV ~ QdV 
V V 
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Obviously,  in this case  ;t u and kl will be expres sed  as functions of the mechanica l  T o and ce r t a in  
geomet r i c  qi p a r a m e t e r s  de te rmin ing  the initial configurat ion of the body. 

P roceed ing  to the ana lys i s  of the p las t ic  deformat ion  p r o c e s s e s ,  we a s s u m e  that  the deformat ion  
k inemat ics  a r e  known. The cons t ruc t ion  of the p las t ic  m e c h a n i s m s  and the cor responding  s t r a i n - r a t e  
s chemes  is  a p rob l em  of the l imi t  ana lys i s  of nondeformable  bodies  and an  object  of spec ia l  attention. /k 
number  of examples  of the cons t ruc t ion  of the p las t ic  m e c h a n i s m s  for  specif ic  s t r u c t u r e s  under given load -  
ing can be found in [2]. 

I t  should be kept  in mind that  if the deformat ion  m e c h a n i s m  has  n deg rees  of f r eedom,  then the a n a l -  
ys i s  of the p r o c e s s  reduces  to the ana lys i s  of n independent p las t ic  m e c h a n i s m s ,  the instantaneous geom~ 
e t ry  of each of which is de te rmined  by a single genera l ized  coordinate  6 n. Accordingly ,  without loss  of 
genera l i ty ,  we can confine our at tent ion to a deformat ion  mechan i sm having only one degree  of f r eedom 
de te rmined  by the coordinate  6. Together  with the geomet r i c  re la t ions  the k inemat ics  of the p las t ic  m e c h -  
an i sm enable us to exp res s  the va r i ab le  values  of the p a r a m e t e r s  qi, desc r ib ing  the instantaneous configu+ 
ra t ion  of the de fo rmed  body during the p r o c e s s  of deformat ion ,  as  functions of 6 

qi = ~ i  (8). 

Introducing ~i into (1) and solving for 1, we obtain not the l imi t  points ,  but the l imi t  curves  

* F ~u(~) ~< v , ~ (8) > - -  (2) 

.( PudS I PudS 
s 

of the load requi red  to ensure  a continuous deformat ion  p r o c e s s ,  whose instantaneous geomet ry ,  c o r r e -  
s p o n d i n g t o t h e a s s u m e d  p las t ic  m e c h a n i s m ,  is de te rmined  by the va r i ab le  value of 6. It  is a l so  des i r ab le  
to r e p r e s e n t  the deformat ion  load in the fo rm of an ave raged  curve  with an e s t ima te  of the poss ib le  range  
of values  

! 1 

Obviously,  the beginning of deformat ion  co r r e sponds  to the l imi t  s ta te  of the geomet r i ca l ly  invar ian t  body, 
when 5 = 50 and ;~uf = ~B, ~ui = ;~H. 

2. By taking a s i m i l a r  approach it  is poss ib le  to ref ine  the l imi t  load and the actual  concept  of the 
c a r r y i n g  capaci ty  of p las t ic  s t r uc tu r e s  in the region of l a rge  deformat ions .  Whereas  the ca r ry ing  capaci ty  
of a nondeformable  r ig id -p las t i c  s t ruc tu re  is uniquely de te rmined  by i ts  l imi t  s ta te ,  that of a s t ruc tu re  
opera t ing  under  conditions of cons iderab le  d is tor t ion  of the initial  geomet ry  r ema ins  m o r e  or l e s s  i nde te r -  
mina te  in the a r e a s  of both analyt ic  and exper imenta l  invest igation.  

In fact ,  cons ider  a r ig id -p las t i c  body loaded by s ta t ica l ly  inc reas ing  loads.  In the initial s tage of 
loading,  within the l imi t s  of the a s s u m e d  r ig id -p las t i c  s cheme ,  the body r e m a i n s  r igid.  Then,  s t a r t ing  
f rom a ce r t a i n  instant ,  an  i nc r ea s e  in load will be accompanied  by the init iation and development  of p las t ic  
zones sti l l  without d is tor t ion  of the initial  geomet ry .  When a ce r t a in  s ta te ,  usual ly  cal led the l imi t  s ta te ,  
is  r eached ,  the p las t ic  zones develop to such an extent that  the body is t r a n s f o r m e d  into a p las t ic  m e c h -  
an i sm and an intense i nc r ea s e  in p las t ic  de format ions ,  accompanied  by cons iderable  d is tor t ion of the initial 
geomet ry ,  se t s  in. I t  is natural  to inquire whether  the l imi t  s ta te  a lways c h a r a c t e r i z e s  the c a r r y i n g  c a p a -  
ci ty of a r i g id -p l a s t i c  body. To answer  this question it  is  n e c e s s a r y  to cons ider  the poss ib le  de format ion  
paths .  H e r e ,  the re  a r e  two poss ib le  paths  of p las t ic  deformat ion  development :  the path leading to the region 
of inc reas ing  s t r a ins  without fu r ther  i nc rea se  in load,  in which case  the l imi t  s ta te  in fact  exhausts  the 
ca r ry ing  capaci ty  of the s t ruc tu re ,  and the path  along which the development  of the p las t ic  s t r a ins  under  
the l imi t  loads c ea s e s  when a ce r t a in  deg ree  of d is tor t ion of the initial geome t ry  is r eached ,  so that fur ther  
deformat ion  is poss ib le  only if there  is a cor responding  i nc r ea se  in the act ing loads beyond the l imi t  value.  
The s t ruc tu re  still  functions in the p o s t - l i m i t  s ta te .  This  i nc rea se  in the ca r ry ing  capaci ty  of p las t ic  s t r u c -  
tu res  as  a r e su l t  of the d is tor t ion  of the initial geomet ry  may  be desc r ibed  as  "geomet r i c  hardening."  If 
mechan ica l  hardening  is usual ly  t r ea t ed  as  an ext ra  r e s e r v e  of s t rength ,  under ce r ta in  conditions geomet r i c  
hardening  might  a l so  be used  for  the s a m e  purpose .  Natura l ly ,  the c a r ry ing  capaci ty  of geomet r i ca l ly  h a r d -  
ening bodies  r e m a i n s  indefinite until the p e r m i s s i b l e  degree  of deformat ion  is given. This  is eas i ly  done, 
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Fig. 1. Bending mechanism of a r ing bent by two radial  
loads.  

for example, by specifying the maximum permissible value of 6. By virtue of (2) the carrying capacity of 
deformable bodies is then given by 

)~z (~m,x) -4 z 4 Zu(6m,x). 

3. As an example we will consider the problem of a circular ring of rectangular cross section bent 
by two radial forces. The plastic mechanism is assumed to be four-hinged (see Figure 1, where the stress 
and strain-rate distributions in the plastic hinges are also given). In the light of the technical theory of 
bending, theactual ~nd possible strain rates and, moreover, the actual and statically admissible stresses 
in the rotating plastic hinges coincide and by virtue of the incompressibility condition 

file bounds given by inequalities (i) approach and reduce to the single equation 

N~ = .I a=~x dV. 
v 

Introducing the rate of rotation in the hinges co, in accordance with Figure 1 we can rewrite Eq. (3) in the 
form 

20) (M A -~ M B ) + owN == (oN (R - -  AR + c). 

Substituting the expressions for the moments and forces in the hinges 

1 MB M A = M o = ~ -  aobh ~, = 4M 0 ~ (i - -  ~), 

N = N0 (2~ - -  1) = ~0Oh (2~ - -  1), ~ = -- if-  m~- 

and solving the express ion obtained for N, we obtain 

N = N~ -- 4M~ 
R - -  AR R - -  AR 

This express ion gives the curve  of the load N required for the continuous deformation of the ring in 
its own plane,  determined by measur ing  the ver t ica l  and horizontal  d iameters .  Specifying the maximum 
permiss ib le  value of this deformation AR, we obtain an equation for the ca r ry ing  capaci ty of the ring under 
radial  loading with allowance for the permiss ib le  dis tor t ion of the initial shape 

Nm~• ~ N~ 

R -- fir  . . . .  

In tiffs case ,  since the l imit  load cor responds  to Z~  = O, the geometr ic  tmrdening coefficient 

k - -  R N m ~  _ 1 

Noh 1 - -  AR--~aZ 
R 

A more  complicated example of the application of the proposed method is given in [3], where it is 
used to solve the plast ic problem of the turning inside out of a shell of revolution. 
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2. 
3. 

NOTATION 

a r e  the coordinate  axes ;  
a r e  the volume and surface: a r e a ;  
is  the s t r a in  r a t e  intensity;  
is  the power  of the s t r e s s  field; 
a r e  the external  loads and the d i sp lacements  of su r face  points ;  
is the no rm a l  s t r e s s ;  
is  the shear  s t r e s s ;  
is  the no rma l  s t r a i n  r a t e ;  
is  the shear  s t r a in  r a t e ;  
is  the shea r  yield s t r e s s ;  
a r e  the upper  and lower  values  of the l imi t  load coefficient;  
a r e  the geomet r i c  p a r a m e t e r s  and genera l ized  coordinate ;  
a r e  the no rma l  load and bending moment ;  
is  the angular  ve loci ty  in the p las t ic  hinge; 
a r e  the width and height of r ec tangu la r  c r o s s  sec t ions ;  
is the coordinate  of the neut ra l  ax is ;  
a r e  the radius  of the axis  of r igidi ty  of the r ing  and its inc rement ;  
is  the geomet r i c  hardening coefficient ,  
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