EXTENSION OF THE METHODS OF LIMIT ANALYSIS
TO THE INVESTIGATION OF THE PLASTIC FLOW OF
BODIES WITH VARIABLE GEOMETRY

V. N. Zalesov UDC 539.374

Making use of the fact that the limit state does not depend on the loading history, the author
proposes that limit analysis theory be used to investigate plastic flow processes associated
with a change in initial geometry by representing the deformation process as a continuous
sequence of limit states defined by a given instantaneous configuration.

The extremum principles of rigid-plastic flow theory were developed in order to investigate the equi-
librium limits of nondeformable bodies, i.e., bodies whose deformation in the limit state is so small that the
equilibrium conditions can be written for the initial geometry. The idea of extending the extremum princi-
ples to the analysis of processes of plastic flow associated with distortion is based on the important observa-
tion that, as distinct from the general case of plastic deformation, the limit state does not depend on the
loading history and the initial stresses. By representing the process of plastic deformation as a continuous
sequence of limit states defined by a given instantaneous configuration of the deformed body, one can use -
this property of the limit state, on the one hand, to obtain the curve of the required load ensuring continuity
of the deformation process and, on the other, to estimate the reserves of carrying capacitydetermined by
the distortion of the initial geometry.

1. The mathematical formulation of the extremum principles of rigid-plastic flow theory is given by
the system of inequalities [1]
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is the intensity of the kinematically possible strain-rate field; A is the limit load coefficient,

In order to solve the problem of the equilibrium limit of an undeformed body it is sufficient to con-
struct the stress field, satisfying only the equilibrium equations and the conditions on the surface S, and
the strain-rate field compatible with the constraints imposed on the body. By solving inequalities (1) for
A, we obtain its upper and lower bounds
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Obviously, in this case A, and A] will be expressed as functions of the mechanical 7o and certain
geometric gj parameters determining the initial configuration of the body.

Proceeding to the analysis of the plastic deformation processes, we assume that the deformation
kinematics are known. The construction of the plastic mechanisms and the corresponding strain-rate
schemes is a problem of the limit analysis of nondeformable bodies and an object of special attention, A
number of examples of the construction of the plastic mechanisms for specific structures under given load-
ing can be found in [2].

It should be kept in mind that if the deformation mechanism has n degrees of freedom, then the anal-
ysis of the process reduces to the analysis of n independent plastic mechanisms, the instantaneous geom~
etry of each of which is determined by a single generalized coordinate Op. Accordingly, without loss of
generality, we can confine our attention to a deformation mechanism having only one degree of freedom
determined by the coordinate 6. Together with the geometric relations the kinematics of the plastic mech-
anism enable us to express the variable values of the parameters gi, describing the instantaneous configu+
ration of the deformed body during the process of deformation, as functions of §
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Introducing ¢; into (1) and solving for A, we obtain not the limit points, but the limit curves
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of the load required to ensure a continuous deformation process, whose instantaneous geometry, corre-
sponding to the assumed plastic mechanism, is determined by the variable value of §. It is also desirable
to represent the deformation load in the form of an averaged curve with an estimate of the possible range
of values
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Obviously, the beginning of dfformation corresponds to the limit state of the geometrically invariant body,
when 6 = §, and Auf= 2B, Mi= M.

2. By taking a similar approach it is possible to refine the limit load and the actual concept of the
carrying capacity of plastic structures in the region of large deformations. Whereas the carrying capacity
of a nondeformable rigid-plastic structure is uniquely determined by its limit state, that of a structure
operating under conditions of congiderabie distortion of the inifial geometry remains more or less indeter-
minate in the areas of both analytic and experimental investigation.

In fact, consider a rigid-plastic body loaded by statically increasing loads. In the initial stage of
loading, within the limits of the assumed rigid-plastic scheme, the body remains rigid. Then, starting
from a certain instant, an increase in load will be accompanied by the initiation and development of plastic
zones still without distortion of the initial geometry. When a certain state, usually called the limit state,
is reached, the plastic zones develop to such an extent that the body is transformed into a plastic mech-
anism and an intense increase in plastic deformations, accompanied by considerable distortion of the initial
geometry, sets in, It is natural to inquire whether the limit state always characterizes the carrying capa-
city of a rigid-plastic body. To answer this question it is necessary to consider the possible deformation
paths. Here, there are two possible paths of plastic deformation development: the path leading to the region
of increasing strains without further increase in load, in which case the limit state in fact exhausts the
carrying capacity of the structure, and the path along which the development of the plastic strains under
the limit loads ceases when a certain degree of distortion of the initial geometry is reached, so that further
deformation is possible only if there is a corresponding increase in the acting loads beyond the limit value.
The structure still functions in the post-limit state. This increase in the carrying capacity of plastic struc-
tures as a result of the distortion of the initial geometry may be described as "geometric hardening.” If
mechanical hardening is usually treated as an extra reserve of strength, under certain conditions geometric
hardening might also be used for the same purpose. Naturally, the carrying capacity of geometrically hard-
ening bodies remains indefinite until the permissible degree of deformation is given. This is easily done,
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Fig, 1. Bending mechanism of a ring bent by two radial
loads.

for example, by specifying the maximum permissible value of 5. By virtue of (2) the carrying capacity of
deformable bodies is then given by
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3. As an example we will consider the problem of a circular ring of rectangular cross section bent
by two radial forces. The plastic mechanism is assumed to be four-hinged (see Figure 1, where the stress
and strain-rate distributions in the plastic hinges are also given). In the light of the technical theory of

bending, theactual and possible strain rates and, moreover, the actual and statically admissible stresses
in the rotating plastic hinges coincide and by virtue of the incompressibility condition

E,+E+E=0 (3)
the bounds given by inequalities (1) approach and reduce to the single equation
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Introducing the rate of rotation in the hinges w, in accordance with Figure 1 we can rewrite Eq. (3) in the
form

20 (MA + MB) + wcN = oN(R— AR+ ¢).

Substituting the expressions for the moments and forces in the hinges

MA =M, = % o bk, MB = 4M,E (1 —8),
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and solving the expression obtained for N, we obtain
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This expression gives the curve of the load N required for the continuous deformation of the ring in
its own plane, determined by measuring the vertical and horizontal diameters. Specifying the maximum
permissible value of this deformation AR, we obtain an equation for the carrying capacity of the ring under
radial loading with allowance for the permissible distortion of the initial shape

Nh
R — ARmax '
In this case, since the limit load corresponds to AR = 0, the geometric hardening coefficient
RNmax — 1
N oh 1 — é&“’_x
R

A more complicated example of the application of the proposed method is given in [3], where it is
used to solve the plastic problem of the turning inside out of a shell of revolution.

Nmax =

635



NOTATION

are the coordinate axes;

are the volume and surface area;

is the strain rate intensity;

is the power of the stress field;

are the external loads and the displacements of surface points;
is the normal siress;

is the shear stress;

is the normal strain rate;

is the shear strain rate;

is the shear yield sfress;

are the upper and lower values of the limit load coefficient;
are the geometric parameters and generalized coordinate;

are the normal load and bending moment;

is the angular velocity in the plastic hinge;

are the width and height of rectangular cross sections;

is the coordinate of the neutral axis;

are the radius of the axis of rigidity of the ring and its increment;
is the geometric hardening coefficient.
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